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Abstract
The exact particle and energy densities for a noninteracting Fermi gas at
any temperature in a d-dimensional harmonic trap are obtained, and they are
expressed by the gamma function and the Laguerre polynomials. The obtained
analytical expressions are rapidly converging series and may be conveniently
used for the numerical calculations. These expressions can be used for the
comparison with the experimental results and for the test of the local density
approximation.

PACS numbers: 05.30.Fk, 03.75.Fi

1. Introduction

The ideal Fermi gas is an old and well-understood problem. There exist many physical systems
for which the noninteracting Fermi gas is a good zeroth-order approximation. Historically,
the noninteracting Fermi gas was applied to discuss the equilibrium states of white dwarf
stars by Fowler (1926), to explain the paramagnetism of the alkali metals by Pauli (1927),
to explain the properties of metals by Sommerfeld (1927), and to obtain rough estimates for
electron distributions and the binding energies of heavy atoms by Thomas (1927) and Fermi
(1928), respectively [1]. In these systems, the quantum degenerate effects dominate over the
interaction.

The realization of Bose–Einstein condensation in the experiments on dilute vapours of
akali-metal elements [2, 3] has stimulated many further experimental and theoretical studies
[4–7]. Recently, the evaporative cooling of dilute Fermi gases has been achieved using
magnetic confinement techniques [8]. In these experiments, the interactions between atoms
are weak. For dilute spin-polarized Fermi gases in the same hyperfine state, the Pauli exclusion
principle forbids two-body s-wave scattering. The only remaining interaction is the dipole–
dipole interaction between atoms, which is usually negligible. Therefore, a noninteracting
Fermi gas is a very good approximation to an ultracold spin-polarized Fermi gas. This contrasts
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strongly with the dilute ultracold Bose gas, where the weak interactions between atoms have
pronounced effects.

Since the noninteracting Fermi gas can be used for comparison with the experimental
results, there exist enormous investigations on the thermodynamic properties using the
Thomas–Fermi approximation [9], the path-integration approach [10] and numerical
calculations [11]. Recently, the ground state particle and kinetic energy densities for
noninteracting Fermi gases in d-dimensional harmonic traps have been obtained using an
inverse Laplace transform [12]. Very recently, the exact particle and energy densities for the
trapped noninteracting Bose gas and for the trapped noninteracting Fermi gas with chemical
potential less than the ground state energy have been obtained [13]. In this paper, we apply the
Laplace transform method to the finite temperature noninteracting Fermi gas in a harmonic
trap.

2. Formulation of the problem

The single-particle Schrödinger equation reads[
− h̄2

2m
∇2 +

1

2
mω2r2

]
ψi(�r) = Eiψi(�r) (1)

with

Ei = h̄ω(l1 + · · · + ld + d/2) l1, . . . , ld = 0, 1, 2, . . . (2)

and

ψi(�r) = φ(l1, ω, x1) · · ·φ(ld , ω, xd) (3)

where d is the spatial dimension,φ(l, ω, x) are the wavefunctions of one-dimensional harmonic
oscillator,

φ(l, ω, x) =
[

mω

πh̄(2l l!)2

]1/4

exp
(
−mω

2h̄
x2

)
Hl

(√
mω

h̄
x

)
(4)

and

Hl(z) = (−1)l ez
2 dl

dzl
e−z2

. (5)

The single-particle density matrix is [14, 15]

C(d; �r, �r ′; β) =
∑
i

ψ∗
i (

�r ′)ψi(�r) e−βEi =
[

mω

2πh̄ sinh(βh̄ω)

]d/2

× exp
{
−mω

4h̄
[(�r + �r ′)2 tanh(βh̄ω/2) + (�r − �r ′)2 coth(βh̄ω/2)]

}
(6)

where β = 1/kBT .
The particle and energy densities are given by

ρ(�r) = g
∑
i

|ψi(�r)|2 1

eβ(Ei−µ) + 1
(7)

and

e(�r) = g
∑
i

|ψi(�r)|2Ei 1

eβ(Ei−µ) + 1
(8)

where the factor g accounts for spin. The chemical potential µ is determined by the total
number of particles N = g

∑
i 1/[eβ(Ei−µ) + 1].
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The kinetic energy density is given by

eK(�r) = e(�r)− 1
2mω

2r2ρ(�r). (9)

Substituting equations (3) and (4) into (7) gives

ρ(�r) = g
[mω
πh̄

]d/2
exp

(
−mω
h̄
r2

) ∞∑
l1,l2,...,ld=0

1

2l1+l2+···+ld l1!l2! · · · ld !
H 2
l1

(√
mω

h̄
x1

)

×H 2
l2

(√
mω

h̄
x2

)
· · ·H 2

ld

(√
mω

h̄
xd

)
1

eβ[h̄ω(l1+···+ld+d/2)−µ] + 1
. (10)

From equation (5) we see that for l large enough, the explicit expressions of Hl are not
available. Hence, the evaluation of equation (10) by summing over Hermite polynomials is
not feasible. We must seek a method to evaluate equations (7) and (8).

The particle and energy densities are given by the following.

Theorem 1. For the weak degenerate case µ < E0, we have

ρ(�r) = g

∞∑
n=1

(−1)n+1 enβµC(d; �r, �r; nβ) (11)

and

e(�r) = −g
∞∑
n=1

(−1)n+1 1

n
enβµ

∂

∂β
C(d; �r, �r; nβ). (12)

This result is obtained in [13].

Proof. Since Ei > µ, in equations (7) and (8) we may expand 1/[eβ(Ei−µ) + 1] as a power
series in e−β(Ei−µ). Making use of equation (6), we obtain the desired results. �

Theorem 2. For the strong degenerate case µ > E0, ρ(�r) is given by

ρ(�r) = g

∞∑
n=0

(−1)nL−1
µ

[
C(d; �r, �r; β ′)
β ′ + nβ

]
+ g

∞∑
n=1

(−1)nL−1
µ

[
C(d; �r, �r; β ′)
β ′ − nβ

] ∣∣∣∣
Re(β ′−nβ)<0

.

(13)

Here the Laplace transform is defined as follows [16]. Let f (x) be a real function defined in
the interval (0,∞) such that f (x) is piecewise continuous and |f (x)| < M ec1x . HereM > 0
and c1 > 0 are constants. The Laplace transform of f (x) is defined by

L(f ) ≡ h(s) =
∫ ∞

0
e−sxf (x) dx (14)

where the integration is convergent in the half-plane Re(s) > c1. h(s) is an analytic function
of s in the domain Re(s) > c1. The inverse Laplace transform is given by

f (x) = L−1h(s) = 1

2π i

∫ c+i∞

c−i∞
esxh(s) ds x > 0 (15)

and
1

2π i

∫ c+i∞

c−i∞
esxh(s) ds = 0 x < 0 (16)

where c > c1.
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Proof. In equation (7), Taylor expanding 1/[eβ(Ei−µ) + 1], we obtain

ρ(�r) = g

∞∑
n=0

(−1)n
∑
i

|ψi(�r)|2 enβ(Ei−µ)�(−Ei + µ)

+ g
∞∑
n=1

(−1)n+1
∑
i

|ψi(�r)|2 e−nβ(Ei−µ)�(Ei − µ) (17)

where�(x) = 1 for x � 0 and�(x) = 0 for x < 0.
From equation (6) we obtain

C(d; �r, �r; β ′) =
∑
i

|ψi(�r)|2 e−β ′Ei =
∫ ∞

E0

dED(E)|ψE(�r)|2 e−β ′E

= Lβ ′[D(E)|ψE(�r)|2] (18)

whereD(E) is the state density. Applying an inverse Laplace transform to equation (18) gives

D(E)|ψE(�r)|2 = 1

2π i

∫ c+i∞

c−i∞
dβ ′ eβ

′EC(d; �r, �r; β ′) = L−1
E C(d; �r, �r; β ′) (19)

so that∑
i

|ψi(�r)|2 enβ(Ei−µ)�(−Ei + µ)

= |ψ0(�r)|2 enβ(E0−µ) +
∫ µ

E0

dED(E)|ψE(�r)|2 enβ(E−µ)

= |ψ0(�r)|2 enβ(E0−µ) +
∫ µ

E0

dE enβ(E−µ) 1

2π i

∫ c+i∞

c−i∞
dβ ′ eβ

′EC(d; �r, �r; β ′)

= |ψ0(�r)|2 enβ(E0−µ) − enβ(E0−µ) 1

2π i

∫ c+i∞

c−i∞
dβ ′ eβ

′E0C(d; �r, �r; β ′)
1

β ′ + nβ

+
1

2π i

∫ c+i∞

c−i∞
dβ ′ eβ

′µC(d; �r, �r; β ′)
1

β ′ + nβ
= L−1

µ

[
C(d; �r, �r; β ′)

1

β ′ + nβ

]
(20)

and∑
i

|ψi(�r)|2 e−nβ(Ei−µ)�(Ei − µ)

=
∫ ∞

µ

dE e−nβ(E−µ) 1

2π i

∫ c+i∞

c−i∞
dβ ′ eβ

′EC(d; �r, �r; β ′)

= −L−1
µ

[
C(d; �r, �r; β ′)
β ′ − nβ

] ∣∣∣∣
Re(β ′−nβ)<0

(21)

where E0 = h̄ωd/2 and ψ0(�r) = (mω/πh̄)d/4 exp(−mωr2/2h̄) are the energy and
wavefunction of the ground state, respectively. By arriving at equation (20), we use the
relation

|ψ0(�r)|2 = L−1
E0

[
C(d; �r, �r; β ′)

1

β ′ + nβ

]
. (22)

�
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Theorem 3. For µ > E0, e(�r) is given by

e(�r) = −g
∞∑
n=0

(−1)nL−1
µ

[
1

β ′ + βn

∂C(d; �r, �r; β ′)
∂β ′

]

− g
∞∑
n=1

(−1)nL−1
µ

[
1

β ′ − nβ

∂C(d; �r, �r; β ′)
∂β ′

] ∣∣∣∣
Re(β ′−nβ)<0

. (23)

Proof. Making use of

−∂C(d; �r, �r; β ′)
∂β ′ =

∑
i

|ψi(�r)|2Ei e−β ′Ei (24)

and

E0|ψ0(�r)|2 = −L−1
E0

[
1

β ′ + nβ

∂C(d; �r, �r; β ′)
∂β ′

]
(25)

and following the same procedure as in the proof of theorem 1, we obtain the result. �

3. The inverse Laplace transform

The above inverse Laplace transforms are obtained using the following lemmas.

Lemma 1. For β > 0, C(d; �r, �r; β) may be expanded as a power series in e−βh̄ω,

C(d; �r, �r; β) = |ψ0(�r)|2
∞∑
j=0

(−1)jLj (2mωr
2/h̄)

×
∞∑
k=0

	(d/2 + k)

k!	(d/2)
[eβh̄ω(−j−2k−d/2) + eβh̄ω(−j−1−2k−d/2)] (26)

where the Laguerre polynomials are defined by

Lαn(x) = 1

n!
exx−α dn

dxn
(e−xxn+α) =

n∑
m=0

(−1)m
(
n + α

n−m

)
xm

m!
(27)

with (
p

n

)
= p(p − 1) · · · (p − n + 1)

n!

(
p

0

)
= 1 (28)

Ln(x) ≡ L0
n(x) = 1

n!
ex

dn

dxn
(e−xxn) =

n∑
m=0

(−1)m
(

n

n−m

)
xm

m!
(29)

and Lα0 (x) = 1.

In order to evaluate the inverse Laplace transforms in equations (13) and (23), we need
the analytical continuation of C(d; �r, �r; β) from the smaller region β > 0 to the larger region
Re(β) > 0. This is fulfilled using the Weierstrass analytical continuation method and the
power series representation of C(d; �r, �r; β). In this way, we obtain, for example,

L−1
µ

[
C(d; �r, �r; β ′)
β ′ + nβ

]
= |ψ0(�r)|2

∞∑
j=0

(−1)jLj (2mωr2/h̄)

×
∞∑
k=0

	(d/2 + k)

k!	(d/2)
L−1
µ

[
eβ

′h̄ω(−j−2k−d/2) + eβ
′h̄ω(−j−1−2k−d/2)

β ′ + nβ

]
. (30)
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Proof. Making use of the mathematical identity [17]

(1 − z)−α−1 exp

[
x

z

z− 1

]
=

∞∑
n=0

Lαn(x)z
n |z| < 1 (31)

we obtain

exp[−x tanh(y/2)] = e−x
∞∑
j=0

(−1)jLj (2x)[e−jy + e−(j+1)y]. (32)

Using equation (32) and the mathematical identity [17]

(1 − z)−p =
∞∑
k=0

	(p + k)

k!	(p)
zk p > 0 |z| < 1 (33)

we obtain the desired result. �

Lemma 2.

L−1
µ

[
A(β ′)
β ′ − nβ

] ∣∣∣∣
Re(β ′−nβ)<0

= L−1
µ

[
A(β ′)
β ′ − nβ

] ∣∣∣∣
Re(β ′−nβ)>0

− enβµA(nβ) (34)

where A(β ′) = C(d; �r, �r; β ′) or ∂
∂β ′C(d; �r, �r; β ′).

These results are evident using the residue theorem.

Lemma 3. For real constants a and b, we have

L−1
λ

[
eaβ

′

β ′ − b

]∣∣∣∣
Re(β ′−b)>0

= eb(λ+a)�(λ + a). (35)

This result is evident using the residue theorem and equation (16).

4. Formulae of particle and energy densities

Collecting the above results, we obtain

Theorem 5. For µ > E0, we have

ρ(�r) = g|ψ0(�r)|2
∞∑
n=0

(−1)n
∞∑
j=0

(−1)jLj (2mωr2/h̄)

×
∞∑
k=0

	(d/2 + k)

k!	(d/2)
[e−nβh̄ω(µ/h̄ω−j−2k−d/2)�(µ/h̄ω − j − 2k − d/2)

− (1 − δn,0) e−nβh̄ω(−µ/h̄ω+j+2k+d/2)�(−µ/h̄ω + j + 2k + d/2)

+ (j → j + 1)] (36)

and

e(�r) = −gh̄ω|ψ0(�r)|2
∞∑
n=0

(−1)n
∞∑
j=0

(−1)jLj (2mωr2/h̄)

∞∑
k=0

	(d/2 + k)

k!	(d/2)

× [(−j − 2k − d/2) e−nβh̄ω(µ/h̄ω−j−2k−d/2)�(µ/h̄ω − j − 2k − d/2)

− (1 − δn,0)(−j − 2k − d/2) e−nβh̄ω(−µ/h̄ω+j+2k+d/2)

×�(−µ/h̄ω + j + 2k + d/2) + (j → j + 1)] (37)
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where ∑
n,j,k

[f (n, j, k) + (j → j + 1)] ≡
∑
n,j,k

[f (n, j, k) + f (n, j + 1, k)]. (38)

Corollary. At absolute zero, equations (36) and (37) reduce to

ρ(�r) = g|ψ0(�r)|2
∞∑
j=0

(−1)jLj (2mωr2/h̄)

∞∑
k=0

	(d/2 + k)

k!	(d/2)

× [�(µ/h̄ω − j − 2k − d/2) +�(µ/h̄ω − j − 1 − 2k − d/2)] (39)

and

e(�r) = −gh̄ω|ψ0(�r)|2
∞∑
j=0

(−1)jLj (2mωr2/h̄)

∞∑
k=0

	(d/2 + k)

k!	(d/2)

× [(−j − 2k − d/2)�(µ/h̄ω − j − 2k − d/2)

+ (−j − 1 − 2k − d/2)�(µ/h̄ω − j − 1 − 2k − d/2)]. (40)

Let µ/h̄ω = M + d/2,M = 0, 1, 2, . . . . Equations (39) and (40) reduce to

ρ(�r) = g|ψ0(�r)|2
[Int(M/2)∑

k=0

	(d/2 + k)

k!	(d/2)
(−1)M−2kLM−2k(2mωr2/h̄)

+
Int[(M−1)/2]∑

k=0

	(d/2 + k)

k!	(d/2)

M−1−2k∑
j=0

2(−1)jLj (2mωr2/h̄)


 (41)

e(�r) = gh̄ω|ψ0(�r)|2
[
(M + d/2)

Int(M/2)∑
k=0

	(d/2 + k)

k!	(d/2)
(−1)M−2k

×LM−2k(2mωr
2/h̄) +

Int[(M−1)/2]∑
k=0

	(d/2 + k)

k!	(d/2)

×
M−1−2k∑
j=0

(2j + 1 + 4k + d)(−1)jLj (2mωr
2/h̄)


 (42)

where Int(M/2) is the integer part of M/2.

Theorem 6. For any µ and hence for any temperature, the particle and energy densities are
still given by equations (36) and (37).

This result is evident since, for µ < E0, equations (36) and (37) reduce to (11) and (12),
respectively.

5. Conclusion

The explicit expressions of Hermite polynomials with order large enough are not available.
Hence, the evaluation of the particle and energy densities for a noninteracting Fermi gas at
any temperature in a d-dimensional harmonic trap by summing over Hermite polynomials is
not feasible. We have used the Laplace transform method to obtain the analytical results. The
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particle and energy densities are expressed by two special functions, i.e. the gamma function
and the Laguerre polynomials. The obtained formulae are rapidly converging series that are
valid in the weak and strong degenerate regimes, including the absolute zero limit. So it is
convenient to carry out numerical calculations. The advantage of our method is that we make
use of the simple expressions of the density matrix of a harmonic oscillator and, hence, avoid
the tedious process of summing over Hermite polynomials.

Because of the Pauli exclusion principle, spin-polarized Fermi atoms in the same hyperfine
sublevel do not interact through s-wave collisions. The noninteracting Fermi gas is a very
good approximation to an ultracold spin-polarized Fermi gas. Therefore, these analytical
expressions can be used for the comparison with the experimental results. Furthermore, these
exact expressions are useful for the test of the local density approximation.
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